
Adding Support for Vector Instructions to 8051 Architecture

Akhil Alluri1, Dhiraj Balakrishnan1, Manvendra Singh1, Rohan Verma1, Pulkit Gairola1 and Dr. Rajeev Kumar Singh2

Abstract— The focus of this paper is on adding support for
vector instructions to the Intel 8051 architecture. The proposed
architecture has a new vector register bank and a unit to decode
the vector addresses.

I. INTRODUCTION

A vector processor is a processor design wherein the
instruction set includes operations that can perform math-
ematical operations on multiple data elements in sequential
cycles. A vector processor that has the capability to perform
operations on all the elements of a vector at once is termed
Array Processor. [1]

Vector processors are in laymen speak could be called mini
supercomputers, machines built primarily to handle large
scientific and engineering calculations. They derive their
performance from a heavily pipe lined architecture which
operations on vectors and matrices can efficiently exploit.

We are trying to make changes to an existing scalar
processor so that it use a single instruction to operate on one-
dimensional arrays of data called vectors i.e. we are trying
to implement a Vector Processor on a Scalar Processor. The
scalar processor we chose for this purpose is the Intel 8051.

A. Why 8051 ?

The 8051 was a popular micro controller and still is due
to its simplicity. It has since been replaced by more powerful
and efficient architecture like the AVR and ARM.

The data path of the 8051 is simple enough to be pliable
for adding an experimental Vectorization module. The same
approach may be possible on any other current analogous
architecture. [2]
Some of the features that have made the 8051 popular are:

• 4 KB on chip program memory.
• 128 bytes on chip data memory(RAM)

B. Components of 8051

• 4 reg banks.
• 128 user defined software flags.
• 8-bit data bus
• 16-bit address bus
• 16 bit timers (usually 2, but may have more, or less).

1The students are with the Department of Computer Science,
Shiv Nadar University. Akhil Alluri aa417@snu.edu.in.
Dhiraj Balakrishnan db422@snu.edu.in. Manvendra Singh
ms234@snu.edu.in. Rohan Verma rv285@snu.edu.in.
Pulkit Gairola pg473@snu.edu.in

2Dr Rajeev Kumar Singh is with the Faculty of the Department
of Computer Science, Shiv Nadar University, NH91, Tehsil Dadri
Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
rajeev.kumar@snu.edu.in

• 3 internal and 2 external interrupts.
• Bit as well as byte addressable RAM area of 16 bytes.
• Four 8-bit ports, (short models have two 8-bit ports).
• 16-bit program counter and data pointer.
• 1 Microsecond instruction cycle with 12 MHz Crystal.

II. IMPLEMENTATION

A. Components added to enable Vectorization

1) Register Banks - 3 Vector Register Banks (V1,V2,V3).
Each bank has eight register cells.

2) Instruction Set - Proposed addition of Instructions to
the family of 8051 Instruction set namely: vlw, vst,
vadd, ’vsub’, ’vmul’.

TABLE I
PROPOSED ADDITIONS TO THE INSTRUCTION SET

Op code Operand Operation

VADD V1, V2 V3 = V1 + V2
VSUB V1, V2 V3 = V1 - V2
VMUL V1, V2 V3 = V1 × V2
VLW V1, x(R1) Load into Vector Bank 1

starting from memory address stored in R1
VSW V1, x(R1) Store from Vector Bank 1

starting into memory address stored in R1

3) Control Unit for Vector access - A control unit that
enables sequential access to the vector bank for loads,
stores and processing. The logic is similar to the data
path for the Program Counter. This is key to the
concept of vectorization.

B. Data flow in using Vectorization

The normal data flow of the 8051 is not affected during
normal operation. After the Instruction is decoded to be
a ’Vector’ operation, the main control circuit of the 8051
activates the secondary control system data path as shown
in the figure 2.

There is a counter unit analogous to the program counter
data path to enable sequential register element indexing in
the vector being used. The counter gives the index input to
the PLA.

The PLA has control lines (in blue) from the main control
engine. These lines will enable the PLA to select which
vector bank to access. The PLA also controls the index
counter for reset purposes. The PLA’s output is given to
a standard register address decoder. The aforementioned



Fig. 1. Layout of the RAM with Vector Register Bank

control lines also allow the PLA to query the memory for
the next element.

Data path flow for a program: Consider the first instruc-
tion in the Vectorized assembly code in Sec III.

1) The instruction decoder encounters a vlw op code.
2) The control engine passes the information to the vector

PLA. Sets Index counter to 0.
3) The control engine also begins querying the data from

the memory referenced by the instruction operand.
4) The incoming word is stored into the vector referenced

by the PLA control lines and the register address
decoder.

5) The index counter is automatically incremented.
6) This process is repeated to complete the vector load.
In case of the VADD instruction:
1) The PLA resets the counter to 0. Register addressing

decoder passes the corresponding cell to the ALU.
2) The result from the ALU is stored in the result vector

of the same index.
3) This is repeated until the end of the vector.

III. ANALYSIS

A. Metrics

Vectorization reduces the number of instructions to process
a continuous block of data. An example to support this
statement is provided below.
Consider the following case:

Fig. 2. Decoder for vector bank

Two 4x2 matrices, A and B, are in memory starting from
the base 100 and 200 respectively. Add and store result in
matrix C starting at 300.
Non-vectorised assembly code:
lw R1, #0
loop: lw R2, 100(R1)
lw R3, 200(R1)
add R2, R2, R3
st R2, 300(R1)
add r1, r1, #4
cmp r1, #28
beqz loop

Vectorised assembly code for the same
vlw V1, #100
vlw V2, #200
vadd V3, V1, V2
vst V3, #300

Number of instructions:
• Non Vectorized: 1 + (8 * 7) = 57 Instructions
• Vectorized: 4 Instructions

Reduction in number of Instructions:

Decrease Percentage =
57− 4

57
× 100 = 92.98% reduction

B. Significance

The significant reduction in the Instruction fetch overhead
for vectorizable operations is useful in embedded systems
thus increasing performance for nominal block operations.

The reduced dependency on memory also means a more
power efficient computation. Memory writes are power
expensive operations.[1]

In recent years, more emphasis is being placed on ex-
tremely low footage learning algorithms. Learning tools like
back propagation extensively use matrix multiplications to
calculate hypotheses. Vectorization on embedded systems
will help improve the performance of such applications on
embedded systems many times over.



C. Further Research

Adding more ALU’s:
There are multiple approaches to pipeling. The more
powerful(and costly) of which is Array processor method.
Adding multiple ALU’s will result in a single cycle vector
operation.

The limitations of such an approach however may
outweigh the performance improvement. The on die ’real-
estate’ requirements for multiple ALU’s are quite significant
and can result in a much costlier to manufacture design.

Variable length vector operations:
The current implementation does vector operations on a
fixed block size. This will lead to memory inefficiencies
analogous to memory overhead in block aligned storage.
Additional optional operands that specify the number of
elements in the block will need to be implemented.

The hardware overhead includes more registers to store the
vector length. More control lines and a more complex logic
in the vector PLA, to read from the state registers and reset
the Index Counter appropriately.

Fig. 3. Multiple ALU’s, each with it’s own Vector Bank

IV. CONCLUSION

This project is used to demonstrate how to add specialized
vectorisation capabilities to architectures found in micro-
controllers.

A. Scope for Practical Use

Majority of the IoT (Internet of Things) devices are meant
to just collect data and sent it to the cloud for processing.
They can be provided with such vectorisation capabilities to
carry out very specific computation work and thus reducing
latency of output (can especially useful in time critical
systems) and the cost of transmitting at each and every step.

ACKNOWLEDGMENT

The authors gratefully acknowledge the guidance of Dr.
Rajeev Kumar Singh and Dr. Abhishek Sharma for giving
us the opportunity to do research and providing invaluable
guidance.

REFERENCES

[1] A.Sharma, Energy Management for Wireless Sensor Network Nodes,
May 2011, pp.5

[2] Intel, Atmel AT89S52 Data Sheet, June 2008
[3] https://www.ece.cmu.edu/ ece740/f13/lib/
[4] https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-

docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html


